ECE 6554: Advanced Computer Vision Spring 2017

Self-supervision or Unsupervised Learning of Visual Representation

Badour AlBahar

Supervised Learning

 \mathbf{X}_2 Χ x _x x X X 0 Ο X_1 Data is labeled

Its goal is to learn to produce the correct output given a new input.

Supervised Learning

X₂ X XXX XX 00 0 00 Ο \mathbf{X}_1 50 40 30 20 > 10 0 -10 -20└ -2 2 10 12 0 4 6 8 x

Classification Output: discrete class labels Goal: classify new inputs correctly

Regression Output: continuous values **Goal:** predict the output accurately for new inputs

http://mlg.eng.cam.ac.uk/zoubin/course05/lect1.pdf

Unsupervised Learning

 $X_2 \uparrow$ 0 Ο 00 Ο X_1 Data is unlabeled

Its goal is to build a model that can be used for reasoning, decision making, predicting things, communicating, etc.

For example:

- finding clusters
- dimensionality reduction

Motivation and Strengths:

- Unsupervised learning is not expensive and time consuming like supervised learning.
- Unsupervised learning requires no human intervention.
- Unlabeled data is easy to find with large quantities, unlike labeled data which is scarce.

Weaknesses:

More difficult than supervised learning because there is <u>NO</u>:

- Gold standard (like an outcome variable)
- Single objective (like test set accuracy)

Unsupervised Visual Representation Learning by Context Prediction C. Doersch, A. Gupta, A. A. Efros ICCV 2015

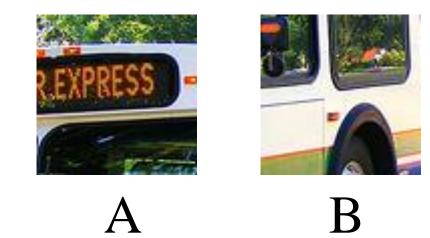
• Semantic labels from humans are expensive.

Do we need semantic labels in order to learn a useful representation?

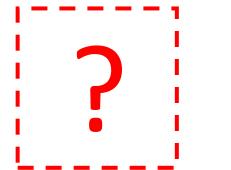
Or is there some other "Less Expensive" pretext task that will learn something similar?

Context Prediction

Given a pair of patches from one image. Can you say where they go relative to one another?

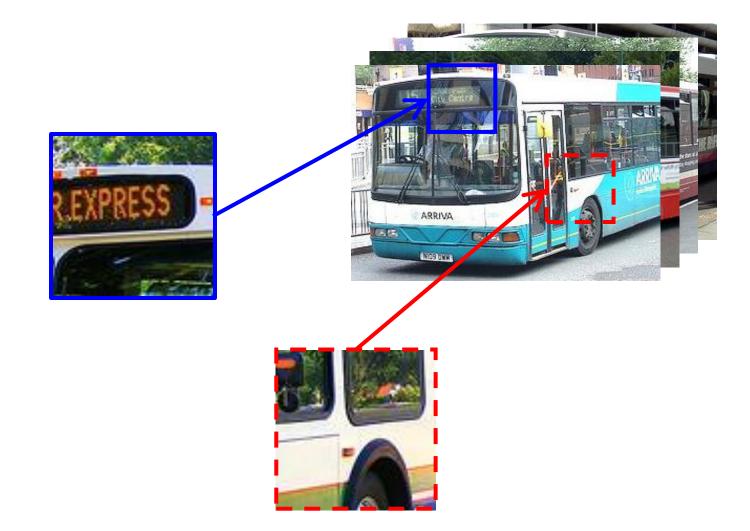


Context Prediction for Images



Slide: Carl Doersch

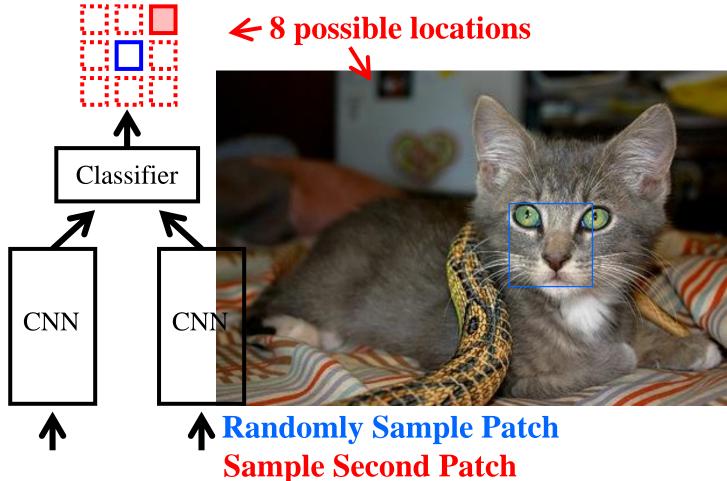
Semantics from a non-semantic task



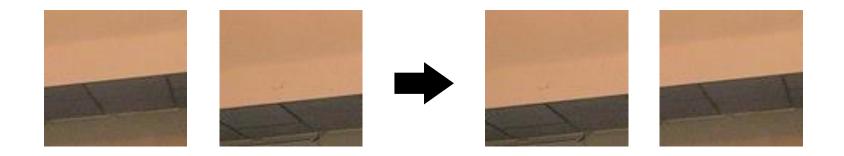
Relative Position Task

unlabeled image

Relative Position Task



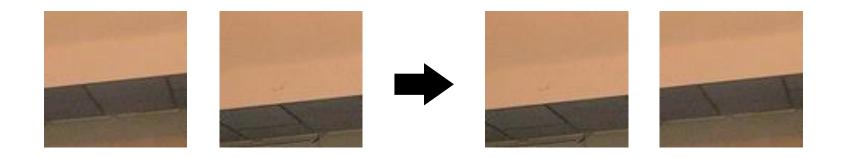
Avoiding Trivial Shortcuts

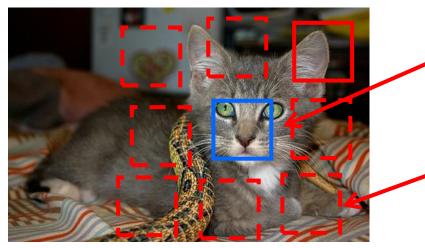


Ways that the network can solve the problem without really extracting

the semantics that we're after.

Avoiding Trivial Shortcuts





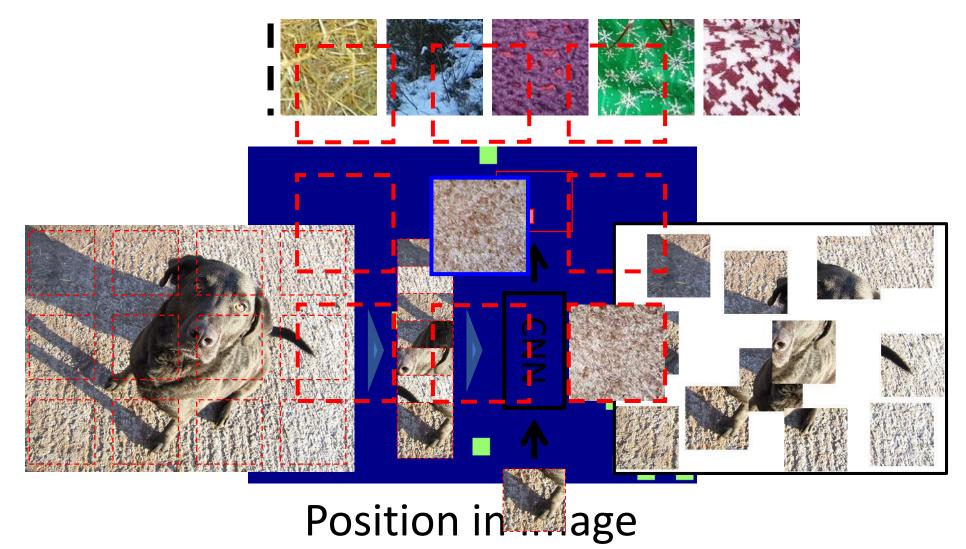
Include a gap

makes it less likely that low-level properties cross both patches

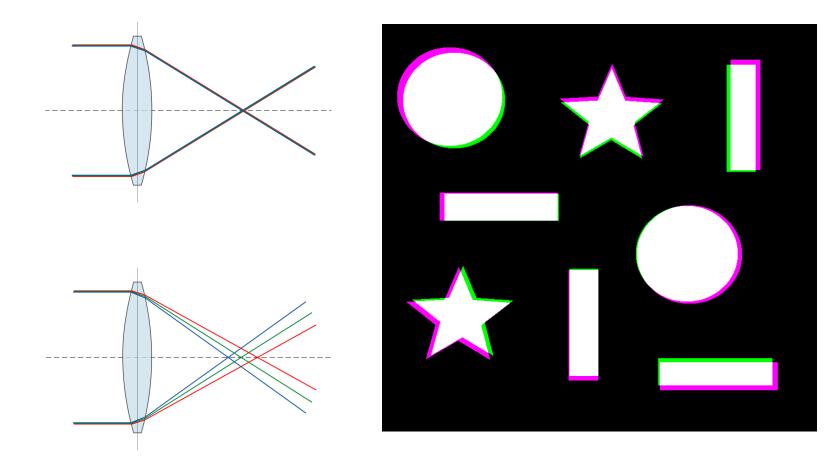
Jitter the patch locations

makes it harder to match straight lines between two patches

A Not-So "Trivial" Shortcut



Chromatic Aberration



- Outpomatianabererationsubtle happensy whether the tenset every every a different wavelengths at and gives away the answer to the different amount relative-position task.

For common lenses
(specifically, the achromatic doublet), the green color
channel is shrunk a little bit
toward the image center
relative to red and blue

Solution

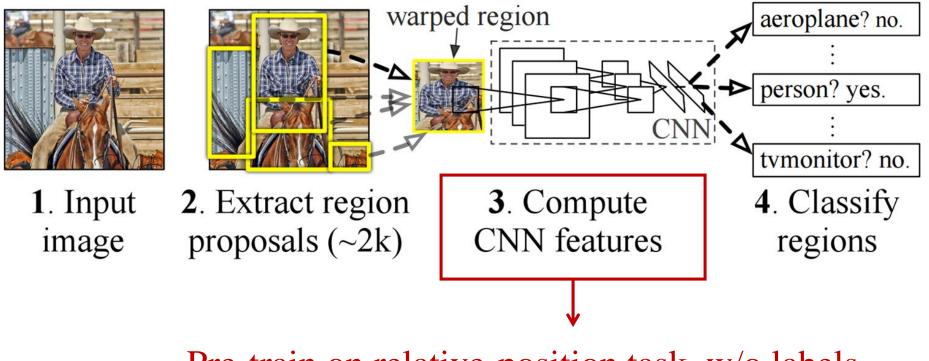
Removing color

In this paper, 2 of the 3 color channels are randomly dropped.

Important lesson:

Deep nets are kind-of lazy. If there's a way to solve a problem without learning semantics, they may learn to do that instead.

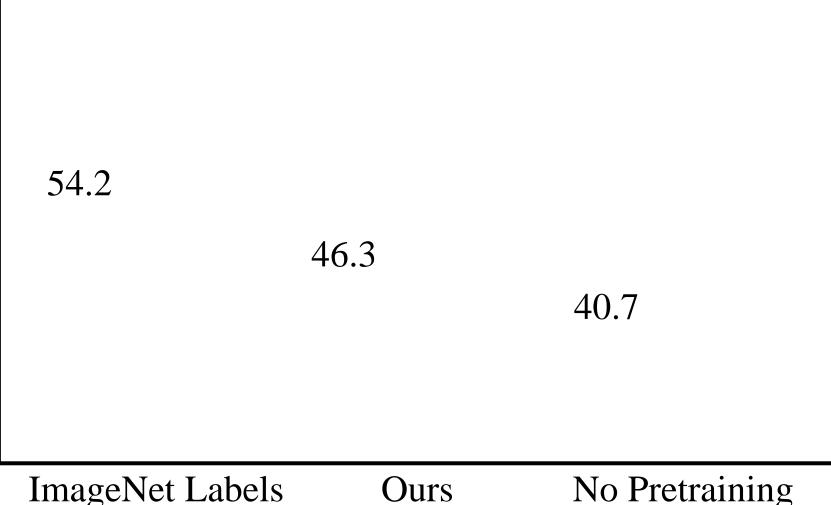
Pre-Training for R-CNN



Pre-train on relative-position task, w/o labels

Pascal Object Detection: VOC 2007 Performance (pretraining for R-CNN)

% Average Precision



Slide: Carl Doersch

Context Encoders: Feature Learning by Inpainting D. Pathak, P. Krähenhühl, J. Donahue, T. Darrell, A. A.

D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, A. A. Efros, CVPR 2016

Inpainting:

The art of restoring missing parts of image.

(a) Input context

(b) Human artist

(c) Context Encoder (L2 loss) (d) Context Encoder (L2 + Adversarial loss)

Context Encoders: Feature Learning by Inpainting

Classical inpainting or texture synthesis approaches are

local non-semantic methods

Hence, they cannot handle large missing region.

Context Encoders: Feature Learning by Inpainting

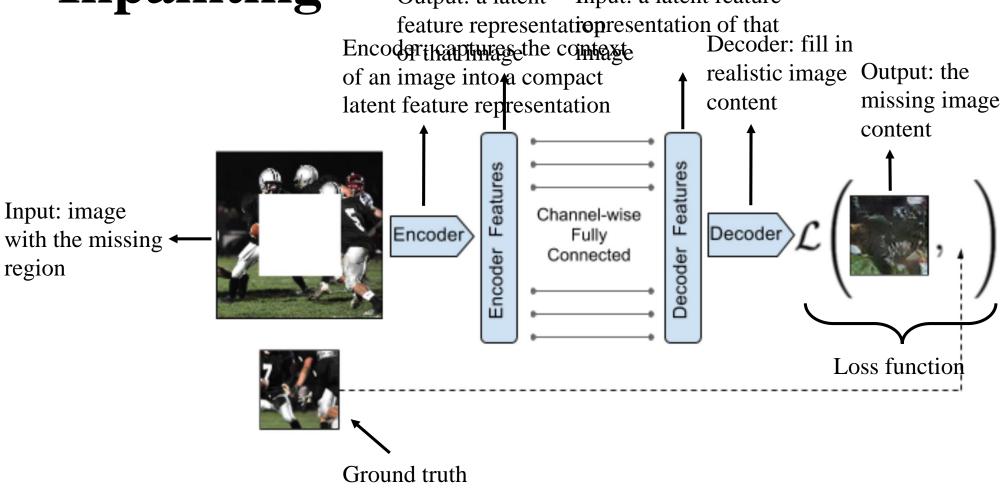
- Unsupervised semantic visual feature learning
- Semantic inpainting

Input:

an image with a missing region

<u>Output:</u> the missing region

Context Encoders: Feature Learning by Inpainting Output: a latent Input: a latent feature



Loss function

• Standard pixel-wise reconstruction loss (L2):

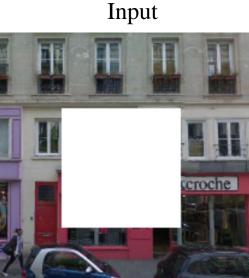
Tries to minimize the distance between the predicted missing region and the ground truth.

produces blurry results

• Reconstruction plus an adversarial loss:

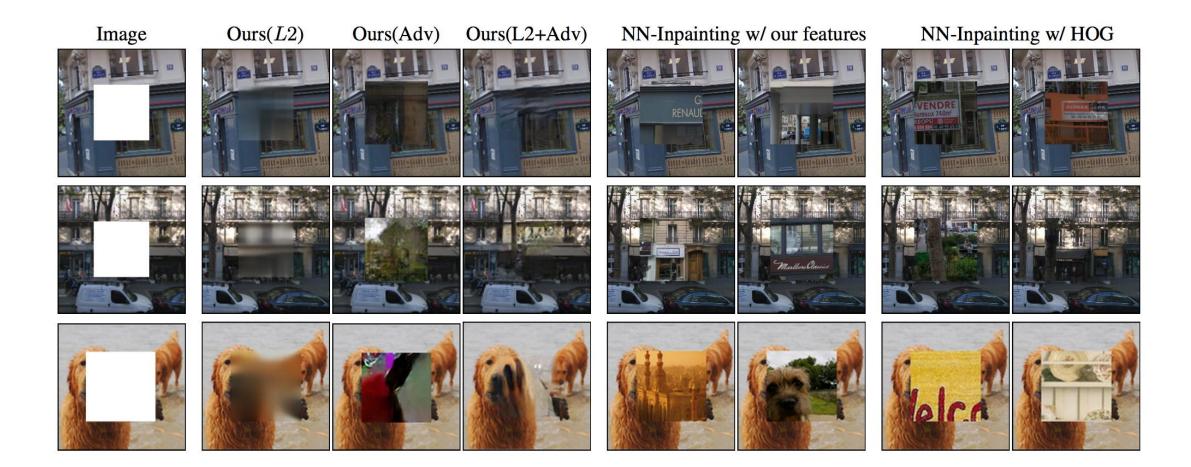
Tries to make the predicted missing region as realistic as possible.

Produces much sharper results



L2 loss

L2 + adversarial loss

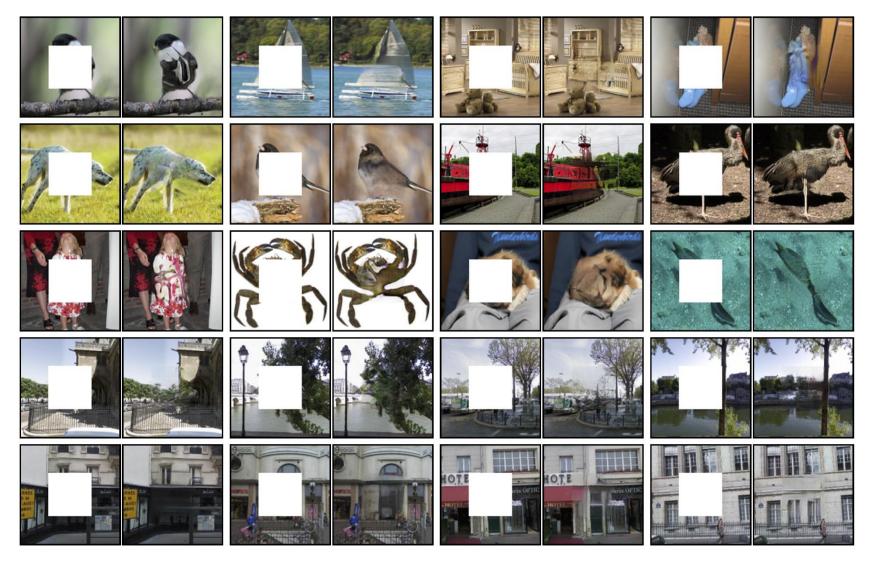


ECE 6554: Advanced Computer Vision Spring 2017

EXPERIMENT

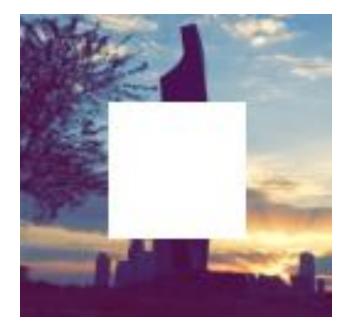
Context Encoders: Feature Learning by Inpainting

Badour AlBahar



Original

Input



Original

Input

Original

Input

Original

Input

Original

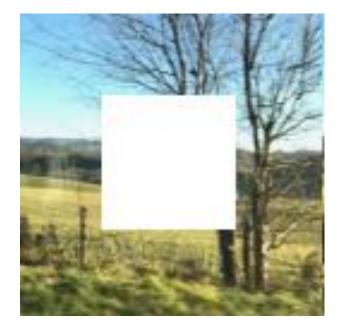
Input

Original

Input

Original

Input



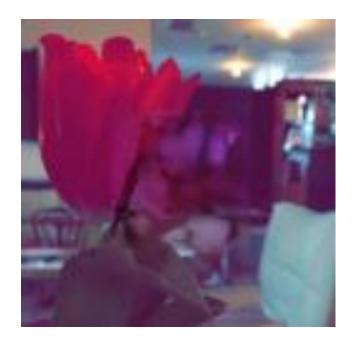
Original

A CARA

Input

Original

Input



Original

Input

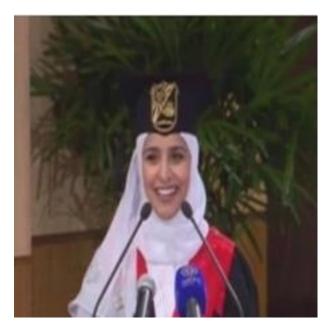
Original

Input

Original

Input

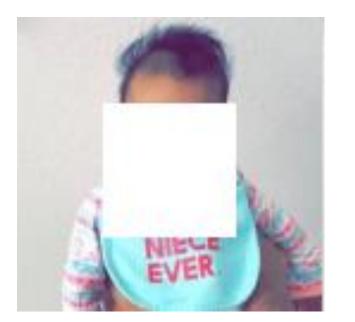
Original

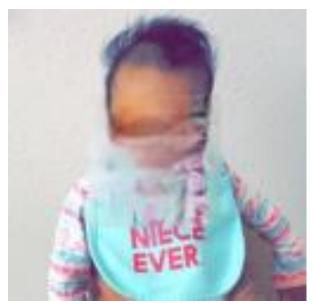


Input

Original

Input





Original

Input

Thank you!